Developmental Pharmacology

Scaling adult doses to infants based on body weight or surface area does not account for developmental changes that affect drug disposition or tissue/organ sensitivity.

> Frank Balis, M.D. February 19, 2009

Chloramphenicol

- Natural product of Streptomyces (1947)
- Inhibits protein synthesis (bacteriostatic)
- Eliminated by glucuronide conjugation (90%) and renal excretion (<10%)
- Nursery infections treated with high doses

Chloramphenicol in Infants

- 3320 gm infant, 44 week gestation
- Meconium stained, foul smelling, timing of ROM unknown
- Procaine penicillin (50,00 units) + chloramphenicol (250 mg) 1M q8h 230 mg/kg/day x 72 hr
- Day 4, gray color & cold, moist skin
- Died at 106 hr, 8 hr after onset of vascular collapse

Sutherland, Am J Dis Child 97:761-7, 1959

Ī				Infants
Premature in	fants b	orn ≥24 hrs	after R	ОМ
	All	nfants	2001-	2500 gm
_	n	Deaths	n	Deaths
No antibiotics	32	6	17	1
Pen + strep	33	6	24	0
Chloramphenicol	30	19	16	8
Pen + strep + chloramphenicol	31	21	15	6

Drug Use in Infants and Children

- Scaling adult doses based on body weight or surface area does not account for developmental changes that affect drug disposition or tissue/organ sensitivity.
- Pharmacologic impact of developmental changes are often discovered when unexpected or severe toxicity in infants and children leads to detailed pharmacologic studies.
- Therapeutic tragedies could be avoided by performing pediatric pharmacologic studies during the drug development process (before wide-spread use of agents in infants and children).

Z	ido	vud	ine in N	lewb	orns	
Group		ge ıys)	Clearar (ml/min.		t _{1/2} (hr)	F (%)
Preterm	5	.5	2.5	;	7.2	
	17	7.7	4.4		4.4	
Term	2	14	10.9		3.1	
	>	14	19.0)	1.9	
Age Gro	up		arance min/kg)	t _{1/2} (hr)		F (%)
1-13 yı	's		24	1.5		68
Adults	s		21	1.1		63

Prevention of Vertical Transmission

- Randomized, double-blind, placebo controlled trial
- Rate of vertical transmission was the primary endpoint
- Zidovudine/placebo regimen
 - Mothers: 100 mg of ZDV antepartum orally, 5 times daily, and then continuous infusion of 1 mg/kg/hr during labor and delivery
 - Infants: 2 mg/kg orally every 6 hours for 6 weeks, beginning 8-12 hours after birth.

Prevention of HIV Transmission Age [weeks] Zidovudine Placebo AGE >32 WEEKS Number 121 127 HIV-infected 31 24.4 Rate (%) 83 89 Number **HIV-infected** 20 Rate (%) 22.5 3 6 9 12 15 18 Hemoglobin [g/dl] Connor et al., NEJM 331:1173-80, 1994

Ontogeny and Pharmacology

- Excretory organ (liver and kidneys) development has the greatest impact on drug disposition (pharmacokinetics)
- The most dramatic changes occur during the first days to months of life
- Anticipate age-related differences in drug disposition based on knowledge of ontogeny
- Effect of ontogeny on tissue/organ sensitivity to drugs (pharmacodynamics) is poorly studied
- Disease states may alter a drug's PK/PD

Renal Ontogeny

- Glomerular filtration rate

 - Low at birth

 Full term newborn 10-15 ml/min/m²

 Premature 5-10 ml/min/m²
 - GFR doubles by 1 week of age
 - Adult values by 6-12 months of age
- Tubular function
 - Secretory function impaired at birth
 - Glomerulotubular imbalance
 - Adult values by 1 year of age

Hepatic Ontogeny

- Phase 1 (oxidation, hydrolysis, reduction, demethylation)
 - Activity low at birth
 - Mature at variable rates

 - Oxidative metabolism increases rapidly after birth
 Alcohol dehydrogenase reaches adult levels at 5 yrs
 - Activity in young children exceeds adult levels
- Phase 2 (conjugation, acetylation, methylation)
- - Conjugation:
 - Glucuronidation ↓ at birth
 Sulfatation ↑ at birth
- Acetylation ↓ at birth, "fast" or "slow" phenotype by 12-15 mo.

Cytochrome P450 (CYP) Enzymes

- Superfamily of Phase 1 enzymes (oxidation, demethylation)
- Nomenclature:

- 17 Families and 39 subfamilies in humans
- CYP1, CYP2, CYP3 are primary drug metabolizing enzymes
- · Half of all drugs metabolized by CYP3A subfamily
- CYP3A4 is most abundant hepatic P450 enzyme and metabolizes at least 50 drugs

Factors Affecting Drug Distribution Physicochemical properties of the drug Cardiac output/Regional blood flow Degree of protein/tissue binding Body composition Extracellular water Adipose tissue

	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	gan Weigh	
	% of	Total Body We	eight
_	Fetus	Newborn	Adult
Skeletal muscle	25	25	40
Skin	13	4	6
Skeleton	22	18	14
Heart	0.6	0.5	0.4
Liver	4	5	2
Kidneys	0.7	1	0.5
Brain	13	12	2

Plasma Proteins					
	Change	from Adult	t Values		
	Newborn	Infant	Child		
Total protein	↓	+	=		
Albumin	↓	=	=		
α ₁ -Acid glycoprotein	↓		=		
Fetal albumin	Present	Absent	Absent		
Globulin	↓	+	=		

rotein Binding i	in Cord and	Adult Plast
<u>.</u>	Plasma Prote	in Binding (%)
	Cord	Adult
Acetominophen	36.8	47.5
Chloramphenicol	31	42
Morphine	46	66
Phenobarbital	32.4	50.7
Phenytoin	74.4	85.8
Promethazine	69.8	82.7
	30.2	17.3

Dosing Based on Body Surface Area

- BSA = 2-dimensional surface area of the skin
- Estimated from formulas using weight & height
- Correlation between BSA and kidney/liver function is weak
- BSA dosing evolved from scaling doses from animals to humans (toxicology)

Species	Wt [kg]	BSA [m ²]	Dose [mg]	Dose [mg/kg]	Dose [mg/m ²]
Mouse	0.018	0.0075	0.027	1.5	3.6
Rat	0.25	0.045	0.125	0.5	2.8
Infant	8	0.4	1.25	0.15	3.1
Child	20	0.8	2.5	0.12	3.1
Adult	70	1.85	5.0	0.07	2.7

Liver Vol | Antipyrine CL | ml/min | 50 | 40 | 1200 | 1200 | 1200 | 1000 | 15.5 | 1.5 | 2 | BSA [m²]

	ROUTE OF	CL _{INFANTS} VS	
Drug	ELIMINATION	CLCHILDREN	Dosing
Methotrexate	R	↓ (15%)	No adjustments
Mercaptopurine	M	ND	No adjustments
Vincristine	M	↓ (/m²)	<1 yo, dose/kg
VM26/VP16	M	ND (/m ²)	No adjustments (/m²)
Doxorubicin	B, M	↓ (/m²)	<2 yo, dose/kg or ↓Zdose/m²
Cytarabine	M	ND	No adjustment

Retinoids					
	≤12 Yr.	>12 Yr	Adult		
ATRA					
MTD	60 mg/m ² /d	90 mg/m ² /d	150 mg/m ² /d		
DLT	Pseudotumor cerebri	HA and PC	Dermatologic		
9-cis-RA					
MTD	$35 \text{ mg/m}^2/d$	85 mg/m ² /d	140 mg/m ² /d		
DLT	Pseudotumor cerebri	HA and PC	HA, diarrhea dermatologic		

Conclusions

- Infants (esp. newborns) may have reduced capacity to eliminate drugs
- Anticipate the effects of ontogeny on drug disposition based on route of elimination
- More systematic pharmacokinetic studies of drugs in infants are needed
- Tissue sensitivity to the toxic effects of drugs may be age-dependent

Cytochrome P450 Enzymes APPEAR 3-4 APPEAR AFTER PRESENT IN FETUS MONTHS OF AGE BIRTH CYP3A7* CYP2D6 CYP1A2 CYP1A1 CYP3A4* CYP3A5 CYP2C9 CYP2C18/19 CYP2E1 * Most abundant form

